No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
My Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device.Visit this site in a desktop browser or download the mobile app to access the full set of features.
2018 GTC San Jose

S8507 - A Deep Learning-Based Intelligent Reference Library for Diagnostic Decision Support in Lung Cancer Screening

Session Speakers
Session Description

Radiological diagnosis and interpretation should not take place in a vacuum -- but today, it does. One of the greatest challenges the radiologist faces when interpreting studies is understanding the individual patient in the context of the millions of patients who have come previously. Without access to historical data, radiologists must make clinical decisions based only on their memory of recent cases and literature. Arterys is working to empower the radiologist with an intelligent lung nodule reference library that automatically retrieves historical cases that are relevant to the current case. The intelligent lung nodule reference library is built on top of our state-of-the-art deep learning-based lung nodule detection, segmentation and characterization system.


Additional Information
Computer Vision Medical Imaging and Radiology NVIDIA Inception Program
Healthcare & Life Sciences
All technical
Talk
25 minutes
Session Schedule