No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
My Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device.Visit this site in a desktop browser or download the mobile app to access the full set of features.
Uppercase Letter
Lowercase Letter
Uppercase or Lowercase Letter
Number
Special Character
Password length of
or more and have
of the following:
Password 2 does not match password.
2018 GTC San Jose
Favorite
Remove from My Interests

S8188 - Application of openACC to Computer Aided Drug Discovery software suite "Sanjeevini"

Session Speakers
Session Description

We will demonstrate the features and capabilities of OpenACC for porting and optimizing the ParDOCK docking module of the Sanjeevini suite for computer aided drug discovery developed at the Supercomputing Facility for Bioinformatics and Computational Biology at the Indian Institute of Technology Delhi. We have used OpenACC to efficiently port the existing C++ programming model of ParDOCK software with minimal code modifications to run on latest NVIDIA P100 GPU card. These code modifications and tuning resulted in a six times average speedup of improvements in turnaround time. By implementing openACC, the code is now able to sample ten times more ligand conformations leading to an increase in accuracy. The ACC ported ParDOCK code is now able to predict a correct pose of a protein-ligand interaction from 96.8 percent times, compared to 94.3 percent earlier (for poses under 1 A) and 89.9 percent times compared to 86.7 percent earlier (for poses under 0.5 A).


Additional Information
Computational Biology / Chemistry, Genomics and Bioinformatics, Performance Optimization
Healthcare & Life Sciences, Higher Education / Research, Software
Beginner technical
Talk
25 minutes
Session Schedule
    Do Not Sell My Personal Information
    First name
    Last name
    Email address