No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
My Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device.Visit this site in a desktop browser or download the mobile app to access the full set of features.
GTC 2018 Silicon Valley

S8899 - Scaling Deep Learning for Immersive User Interfaces

Session Speakers
Session Description

Deep learning creates advances following a virtuous recipe: model architecture search, creating large training datasets, and scaling computation. Baidu Research's Silicon Valley AI Lab develops state-of-the-art conversational user interfaces following this DL recipe. We research new model architectures and features for speech recognition (Deep Speech 3), speech generation (Deep Voice 3), and natural language processing. To deploy these models in impactful products, we want a deep understanding of how recipe components coordinate to drive accuracy improvements. Through large-scale empirical studies, we find intriguing results about how deep learning is likely to scale: As training set size increases, DL model generalization error and model sizes scale as particular power-law relationships. For a fixed dataset size, as model size grows, training time remains roughly constant -- larger models require fewer steps to converge to the same accuracy. These scaling relationships have significant implications on DL research, practice, and systems. They can assist model debugging, setting accuracy targets, and decisions about dataset growth and future computing system design.


Additional Information
AI/DL Research
General
All technical
Talk
50 minutes
Session Schedule